
Elizabeth Dinella: Research Statement

My research interests are in the fields of Software Engineering and Machine Learning
with a focus on improving software correctness through the integration of symbolic program
analysis and neural techniques.

Since the early days of computing, productively writing correct code has posed a significant
challenge. Nevertheless, research in this area is of upmost and timely importance as Large
Language Models (LLMs) have shown remarkable results in code generation tasks, but struggle
to provide interpretable, faithful, trustworthy, and ultimately, correct responses. With an
emphasis on recent advancements in machine learning, my research addresses fundamental
roadblocks in program reasoning. Creating effective program analysis techniques is a chal-
lenging agenda, yielding decades of active research and fruitful results based on rules and
formal logic. Despite their successes, these symbolic approaches have noteworthy limitations in
accuracy, flexibility, scalability, and ease of use. Ultimately, my research objective is to create
effective program analysis techniques through Cooperative Program Reasoning and Neural
Modeling. Through integrating these fields, I seek to address the shortcomings of both
LLMs and symbolic program reasoning approaches by establishing a synergistic relationship
to capitalize on the strengths of both paradigms. My contributions in this space have been
published in top-tier software engineering and machine learning conferences receiving
Spotlight and Distinguished Paper awards (ICLR and ICSE), over 280 citations,
patented, and deployed in industrial systems.

Neural Inference of Specifications
In my PhD research, I showed that inferring specifications of correctness can overcome funda-
mental roadblocks in program reasoning. My research contributions are a fundamental shift
from the traditional symbolic program reasoning paradigm. A statistical paradigm is desirable
as symbolic program analysis techniques suffer across multiple dimensions due to their rigid
rule based nature. Since program analysis is fundamentally an undecidable problem, symbolic
approaches must carefully balance tradeoffs to achieve scalability and high performance. Often
times, such approaches leverage heuristics that can weaken performance. As an alternate
approach, many analysis techniques provide an option for including a human-in-the-loop to
achieve improved performance. However, requiring human interaction hinders ease of use and
full automation. In general, symbolic approaches must balance a tradeoff between performance
and including a human-in-the-loop.

My research asks the question: Can we build program reasoning techniques without
a human-in-the-loop while maintaining high performance? In my PhD work, I have
shown that human interaction can be reduced through neural inference of specifications
while sustaining or even improving performance. I have created effective program reasoning
techniques without a human-in-the-loop for a diverse set of problems including static bug
finding and repair, program merge, and automated test generation.

1/4



In the static bug finding and repair domain, I advanced the state-of-the-art for JavaScript
programs resulting in a first-author publication as a Spotlight paper: Hoppity [1]. Effective
approaches in static bug finding and repair are challenging due to 1) a lack of program specific
correctness properties and 2) complex real-world programming constructs with potentially
unavailable source code (e.g., API / framework calls). Through an end-to-end neural approach,
Hoppity addresses both challenges. Firstly, a correctness checking technique can only find
bugs it has been specifically engineered to find. For an arbitrary program, there is no clear
cut definition of what constitutes an error. Symbolic techniques typically default to a set
of handwritten universal correctness rules which should be true across all programs: (e.g.,
NullPointerException should never occur). These heuristics are not ideal since developers
often want to check for program specific rules of correctness: (e.g.,”You must be logged in
before posting to a blog application”). In contrast, Hoppity learns latent correctness properties
through a graph neural network trained on corpora of bug fixing code commits. Such a
statistical method does not rely on universal correctness rules and is capable of finding program
specific functional bugs. In regards to the second challenge, the neural method underlying
Hoppity is inherently flexible to complex programming constructs and can scale to projects
where the entire source is not available. In an evaluation on real-world bugs, Hoppity was able
to detect and repair more faults than the leading symbolic method, TAJS.

In the program merge domain, my publication DeepMerge [3], contributed the first for-
mulation of merge conflict resolution as a neural modeling problem, and resulted in a 10x
improvement over the state-of-the-art. Techniques for program merging lack correctness
specifications, suffering the same challenge as static bug finding techniques. The most widely
used approach for program merge is the 40 year old diff3 algorithm underlying Git Merge.
When a conflict occurs, this technique has no notion of correctness for an arbitrary program,
and requires developers to manually construct a resolution. Manual merge conflict resolution is
a significant barrier to software development in teams and stalls pipelines to production. Our
work aims to minimize developer labor by automatically performing a resolution when a conflict
is detected. To learn the notion of a correct merge resolution, DeepMerge leverages a neural
encoder-decoder framework trained over a dataset of real-world merge conflicts and resolutions.
As a key innovation to improve performance, I developed a novel input representation unique
to program merge. Our follow up work MergeBert [5] improves upon DeepMerge’s accuracy by
leveraging a pretrained LLM. My work has resulted in a patented tech transfer within Microsoft
and will be released as an external tool in the coming year.

In the automated testing domain, my first-author work on TOGA [4] received a distin-
guished paper award at ICSE 2022 for my contributions in neural test oracle generation.
Automated testing also suffers from the common program analysis challenge: a lack of program
specific correctness specifications in the form of test oracles. A test oracle is a description of
the expected output on a given input. Without effective test oracles, automated testing often
gives inaccurate results in the form of both false positives and false negatives. By framing
test oracle generation as a neurosymbolic problem, leveraging both coverage guided testing
techniques and pretrained LLMs, TOGA is able to detect a variety of program specific bugs.
On a benchmark of real-world faults, I significantly advanced the state-of-the-art in testing
by finding 57 bugs using our inferred specifications in contrast to 20 bugs by the next best
approach. By inferring function specific oracles of correctness, our work is capable of finding
bugs that are not captured by universal heuristics.

2/4



Future Work
In my future research, I am excited about broad synergies of program analysis techniques
and language models that hold immense potential for enhancing software correctness and
programmer productivity. My goals can be categorized as follows: Deep learning to assist
program analysis techniques and Symbolic techniques to assist neural models.

Deep learning to assist program analysis techniques: In my PhD work, I have explored
this direction, but exciting challenges still remain. The fundamental challenge of balancing
human intervention and performance is prevalent in nearly every program reasoning domain.
Regardless of domain, neurosymbolic methods for program reasoning have room for improve-
ment. Can we develop general purpose techniques rather than customized approaches for each
reasoning domain? Can we infer interpretable specifications of correctness? My early efforts
toward interpretable specifications of correctness have shown promising results [2]. In the
near term, I am excited about working toward a general purpose neural specification inference
library to address the challenges which program analysis techniques face. My explorations in
this area indicate that such an inference approach will require training data with qualities of
naturalness and readability for model understanding.

Symbolic techniques to assist neural models: Neural models, particularly LLMs, have
achieved remarkable successes in programming tasks. However, they struggle to understand
program semantics, are not robust to semantic preserving transformations, often hallucinate,
and tend to provide incorrect yet confident responses. My future research asks, can we exploit
symbolic techniques to develop approaches with interpretable outputs? Can we provide formal
guarantees on a model’s outputs? This nascent domain will require rigorous experiments to eval-
uate current approaches on fair benchmarks, observing its failures and successes. I am eager to
explore this quickly developing research direction. My early efforts in this direction show promise
in exploiting symbolic reasoning to address fallbacks in neural modeling for code reasoning tasks.

There is growing interest in these future research directions from both industry and federal
funding programs, acknowledging the importance of improving both program reasoning and
neural methods. The NSF Software and Hardware Foundations (SHF) program supports
software engineering research and encourages joint synergies in areas such as machine learning.
DARPA also provides funding for such research directions. In particular, the Intelligent Genera-
tion of Tools for Security (INGOTS) program supports techniques driven by program analysis
and artificial intelligence. Lastly, industry programs such as Amazon’s automated reasoning
award provide funding for research at the intersection of software engineering and machine
learning. My prior research and knowledge in these domains, as well as my experience writing
grant proposals and securing funding makes me uniquely positioned to tackle the difficult
challenges in this agenda.

In general, success in my research agenda will improve software development efficiency, quality,
and correctness. Grounded in my prior research, I believe there are huge opportunities in
integrating program reasoning techniques and large language models. Effective work in these
directions will lead to more trustworthy, scalable, and accurate neurosymbolic approaches. This
fusion of advanced technologies is timely, important, and will have far-reaching implications
for diverse industries and domains.

3/4



Publications
E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang. Hoppity: Learning
graph transformations to detect and fix bugs in programs. In International
Conference on Learning Representations, 2020.

E. Dinella, S. Lahiri, and M. Naik. Program structure aware precondition
generation. Under Review, 2023.

E. Dinella, T. Mytkowicz, A. Svyatkovskiy, C. Bird, M. Naik, and S. Lahiri.
Deepmerge: Learning to merge programs. IEEE Transactions on Software
Engineering, 49(04):1599–1614, apr 2023.

E. Dinella, G. Ryan, T. Mytkowicz, and S. K. Lahiri. Toga: A neural method
for test oracle generation. In Proceedings of the 44th International Conference
on Software Engineering, ICSE ’22, page 2130–2141, New York, NY, USA,
2022. Association for Computing Machinery.

A. Svyatkovskiy, S. Fakhoury, N. Ghorbani, T. Mytkowicz, E. Dinella, C. Bird,
J. Jang, N. Sundaresan, and S. K. Lahiri. Program merge conflict resolution
via neural transformers. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, page 822–833, New York, NY, USA,
2022. Association for Computing Machinery.

4/4


	Neural Inference of Specifications
	Future Work
	Publications

