
 Example

 Technique

Inferring Natural Preconditions via Program Transformation
Elizabeth Dinella, Shuvendu Lahiri, Mayur Naik

 Contact: edinella@brynmawr.edu

Evaluation

Problem Statement

Solution: Infer a precondition as a boolean returning
method seeded by the target method.

We perform an in-depth comparative evaluation to the state-of-the-art approach on a single
real-world project. Here, we evaluate and compare the resulting preconditions inferred by both
approaches on two aspects. We aim to answer the following research questions:
RQ1: Correctness: Are the inferred preconditions safe and maximal?
RQ2: Naturalness: Can humans easily reason over the inferred preconditions?

Experimental Setup:
Baseline. We evaluate in comparison to Proviso and Daikon as they are the
state-of-the-art and instantiated in C# and Java which are similar to our target language.
Benchmark. We evaluate on 39 (M, M_pre) pairs from the NetBigInteger C# project.
In order to evaluate our technique, we manually translate the NetBigInteger class to
a semantically equivalent class in Java.

RQ1: Correctness. Following the definition of
correctness in Proviso, we evaluate the safety and
maximally of our inferred preconditions on the
benchmark, modulo a test generator. We perform
this evaluation for the 39 preconditions inferred
by our approach.

Result 1: Our approach infers correct (safe and maximal) preconditions for 29 of the 39
methods in the benchmark. The 10 incorrect preconditions were due to EvoSuite
incompleteness. Proviso inferred 34 correctly, while Daikon only correctly inferred 6.

RQ2: Naturalness. To better understand if our inferred preconditions are natural, we
study a human's ability to reason over its behavior. We compare to Proviso, by
conducting a user evaluation of 44 users including computer science PhD students,
undergraduates, and industry software engineers split evenly between two groups.

Motivation

Each user is asked to review a given precondition
and three inputs. We ask the user to classify each
input as legal or illegal. The accuracy of their
answers as well as the time taken to derive the
answer are metrics of how natural or easy the
precondition is to reason over.

User Study Design
We identify 5 preconditions from our evaluation to use filtered by the following criteria:

1. Both our approach and Proviso infer a correct precondition.
2. The precondition inferred by the tools are syntactically different.
3. The precondition is non-trivial (there exists at least 1 illegal and 1 legal input).

Result 2: On average, users were able to more accurately reason over our preconditions
in a shorter time span. Our results were not as strong on preconditions which included
interprocedural try-catch blocks.

Precondition 2 Precondition 3 Precondition 4 Precondition 5

Preconditions separate legal inputs from illegal inputs. Existing
approaches for generating preconditions often infer predicates
which are unnatural and difficult to comprehend. State of the art
approaches combine “features” (e.g. x > 0, foo.size() > 0)
from scratch to construct a boolean predicate which separates
crashing inputs from non-crashing inputs. The resulting
predicate can become unnecessarily complex, difficult to
comprehend, and ultimately, unnatural. In contrast, our
approach performs program transformations to the target
method to infer natural preconditions as segments of code.

Seed generator: Our technique begins by creating a seed
through an up-front source transformation on the target
method M. We begin with the method body and make
transformations to satisfy our problem formulation,
requiring M_pre be a non-exceptional, boolean returning
function. Furthermore, our seed generation process makes
semantics preserving transformations for precise exception
check insertion and syntax-guided reduction in later stages.
The source transformation is designed such that the seed
has the following desirable qualities:

1. M_pre must be boolean returning
2. M_pre must be non-exceptional
3. M_pre localizes crashes

Check Instrumentor: Here, we describe the process for inserting false returning guards
prior to crashes found by the test generator. These are inserted such that M_pre will exit
normally on an illegal input rather than throwing an exception. The check instrumentor
parses a stack trace produced from the execution of the current tests. The stack trace
provides a crash type and location, which allows us to make precise AST transformations.
By only guarding against the given crash type at the given location, we maintain
maximality and do not reject any legal inputs.

We define six transformations which guard against 99% of the crashes the test generator
found on 87 real-world Java projects. Our technique performs AST transformations
according to the Algorithm 1. This algorithm works in synergy with our seed generation as
it expects localized statements to match the given line number.

Call normalization: The process of call normalization is essential for crash localization
during the next phase of transformation. The normalization transformation lifts each call
to its own source line. Call normalization ultimately results in a more readable
precondition. Without call normalization it is not clear whether the exception is occurring
in the method Sqrt or the method Round. On the other hand, performing call
normalization ocalizes the exception in Sqrt. By localizing the crash we reduce the
cognitive load of interprocedural inspection of the exceptional callee.

Fig: Daikon inferred precondition with many irrelevant variables.

M

M_pre_i

M_pre

Seed Generator

Through manual inspection, we
find that the 10 incorrect
preconditions our approach infers
are due to EvoSuite
incompleteness. The 33 incorrect
preconditions Daikon infers are
also due to incompleteness as well
as including irrelevant variables
and relations.

Fig: Proviso inferred precondition.

Fig: Daikon inferred precondition with many irrelevant variables.

